
Network Time Protocols
and Network Time Foundation

Nerdear.la

24 September 2024



How it First Began
In the late 1970s/early 1980s David L. Mills, PhD 
stopped working on early network routing protocols 
and was looking for an interesting new project.  He 
noticed how the lack of time synchronization between 
computers was a Big Problem:

It is somewhere between difficult and impossible to 
correlate events that happen on different systems if 
their clocks are not synchronized.

He chose to work on network time synchronization.



The Mechanics of NTP
Server’s Time

Client’s Time

Time Offset:      θ = ½[(T₂ - T₁) + (T₃ - T₄)]

Network Delay: δ = (T₄ - T₁) - (T₃ - T₂)



The Mechanics of NTP
Server’s Time

Client’s Time

Time Offset:      θ = ½[(T₂ - T₁) + (T₃ - T₄)]
Network Delay: δ = (T₄ - T₁) - (T₃ - T₂)

Client and Server time match.  If T₁=1, T₂=2, T₃=3, T₄=4 then:

Offset/θ = ½[(2-1)+(3-4)] = ½[1+ -1] = ½(0) = 0 seconds
Delay/δ = (4 - 1) - (3 - 2) = 3 - 1 = 2 seconds



The Mechanics of NTP
Server’s Time

Client’s Time

Time Offset:      θ = ½[(T₂ - T₁) + (T₃ - T₄)]
Network Delay: δ = (T₄ - T₁) - (T₃ - T₂)

Client behind Server by 10 seconds.  T₁=1, T₂=12, T₃=13, T₄=4:

Offset/θ = ½[(12-1)+(13-4)] = ½[11+ 9] = ½(20) = 10 seconds
Delay/δ = (4 - 1) - (13 - 12) = 3 - 1 = 2 seconds



The Mechanics of NTP
Server’s Time

Client’s Time

Time Offset:      θ = ½[(T₂ - T₁) + (T₃ - T₄)]
Network Delay: δ = (T₄ - T₁) - (T₃ - T₂)

Client’s clock runs twice as fast as the Server’s clock.
T₁=0, T₂=1, T₃=2, T₄=6:

Offset/θ = ½[(1-0)+(2-6)] = ½[1 + -4] = ½(-3) = -1.5 seconds
Delay/δ = (6 - 0) - (3 - 1) = 6 - 2 = 4 seconds



Adjusting Clocks
We’ve seen how, if the client and server clocks are 
running at the same rate, we can calculate the 
offset that will make the client’s clock match the 
server’s clock.

That’s a good first step.  The next step is to adjust 
the client’s clock rate to better track correct time.

How can we do this?



Adjusting Clocks 2
To determine the difference between the client’s 
clock rate and the server’s clock rate, we wait a 
while and again query the server’s time.

Since we know how long it has been since our last 
query and we know the new offset, simple division 
tells us the rate at which the client’s clock is 
different from the server’s clock.  This value tells us 
how many (fractional) seconds per second to 
adjust the client’s time rate.



Adjusting Clocks 3
For example, let’s say we fully applied any offset 
correction from our previous NTP time query.

100 seconds later we issue another NTP time 
query, and we learn that we have to apply an offset 
correction of 1 millisecond.

1 millisecond/100 seconds is a correction rate of 
10 microseconds per second.



Adjusting Clocks 4
For example, let’s say we fully applied any offset correction from our previous NTP time query.

100 seconds later we issue another NTP time query, and we learn that we have to apply an 
offset correction of 1 millisecond.

1 millisecond/100 seconds is a correction rate of 10 microseconds per second.

So we apply the 1msec offset correction and tell 
the system clock to adjust its rate by 10μsec/sec.

In another 100 seconds we “repeat the dance.”



The poll interval
The number of seconds between polls, the “poll 
interval”, is internally tracked via ‘n’, which is 2ⁿ 
seconds long.  In NTP, ‘n’ can range from
3 (8 seconds) to 17 (about 1.5 days’ time).  The 
default poll interval is 6, or 64 seconds.

If the timekeeping quality of a host is “good”, we 
can make even finer time adjustments by waiting 
longer between our polls.  Likewise, if the time 
quality degrades we reduce the polling interval.



About Network Delay
Please recall:
          Network Delay: δ = (T₄ - T₁) - (T₃ - T₂)
 
The model assumes symmetric delay times 
between the client and server.

What would be needed to accurately measure 
each one-way path delay?

What if that value changes, dynamically?



Packet Transmit Time

     T₁ and T₃ represent “Packet Transmit Times”.

Server’s Time

Client’s Time



Packet Transmit Time
If we build a packet and transmit it:

…
pkt.xmit_time = clock_gettime();
send(dest, pkt);

it’s obvious that some additional time passes 
between the call to clock_gettime() and the 
time send() actually transmits the packet.



PTT and Authentication
…
pkt.xmit_time = clock_gettime();
authenticate(pkt);
send(dest, pkt);

And if we want to add an authentication hash to 
the packet, even more time is needed.

This additional time needs to be added to T₁ and T₃ 
to “correct” the calculations.

But how can we do that?



PTT and Authentication
…
pkt.pre_xmit_time = clock_gettime();
authenticate(pkt);
send(dest, pkt);
pkt.post_xmit_time = clock_gettime();

The post_xmit_time works for T₁ because we 
can use it instead of the exchanged T₁ value.
But post_xmit_time is actually a bit too long.
Some systems can better “tag” the actual transmit 
file in the send()call.
It doesn’t help us correct T₃.  But there are ways…



PTT and Authentication
…
pkt.pre_xmit_time = clock_gettime();
authenticate(pkt);
send(dest, pkt);
pkt.post_xmit_time = clock_gettime();

Communicating the correct T₃ needs other 
mechanisms.  Options include:

● NTP’s Interleave mode
● Transmit post_xmit_time in an extension 

field in the next packet



Modem Technology
The Bell 212A 300/1200 baud modem was 
standardized in 1979.  In 1984, 2400 baud 
modems became available.  These modems were 
generally built with discrete components.  These 
modems exhibit constant processing delay time.  

The Public Switched Telephone Network (PSTN) 
was real copper wires.  A modem connection 
between two systems went over what amounts to 
an uncongested “pipe” on a static network path.



Modems & NIST/ACTS
US NIST used modems and the PSTN to deliver 
very accurate time with their Automated Computer 
Time Service, ACTS, starting in 1988.

ACTS sends a * character as an on-time mark, 
and notes how long it takes from sending the * to 
its “echo” coming back.  ACTS calculates the 
delay, and when that calculation is stable, it 
switches to sending a # timed to arrive at the client 
at the correct time.



Phone Technology
As time passed, “real” modems became more 
complex, and “software modems” (softmodems) 
also arrived.  These advances introduced variable 
processing delay times.

The combination of “technology advances” with 
modems and the PSTN changing from copper 
wires to digital has drastically reduced the 
usefulness of NTP over a modem connection.



Network Technology
Early local networks were 10Mbps, and then 
100Mbps.  The network cards and kernel drivers 
for these speeds offer stable performance.

Gigabit (and faster) network interfaces process 
their data using interrupt coalescing and 
component processing techniques that have more 
random/variable processing performance.



RS232 Technology
Reference clocks often used an RS-232 serial 
connection to communicate time.  There might also 
be a Pulse-Per-Second (PPS) signal, often sent on 
the Data Terminal Ready (DTR) line.

This meant that a kernel that supported TTY 
STREAMS drivers could get excellent NTP time 
synchronization over a real serial connection.

Real serial ports became USB serial ports.



Technology Advances!
We’ve just discussed three places where 
technology advances have happened, modems 
and telephone lines, network interfaces and 
network “media”, and USB serial ports.

There are consequences to changes.  Tradeoffs.

As complexity increases … complexity increases!



Fun with time…
Imagine small devices that have well-synchronized 
time via WiFi connectivity.  ½ of the network delay 
(δ) tells us how far apart each device is.

3.3ns is about 1m of distance.

If the network delay to the “other” device is 330ns, 
that means the “other” device is somewhere on the 
surface of a sphere with a radius of 100m centered 
on this device.



… Fun with time
Imagine small devices that have well-synchronized time via WiFi connectivity.  
½ of the network delay (δ) tells us how far apart each device is.  3.3ns is about 
1m of distance.  If the network delay to the other device is 330ns, that means 
the “other” device is somewhere on a sphere with a radius of 100m centered on 
this device.

If we exchange the distance (½δ) to each of our 
neighbors with each of our neighbors, we can 
calculate the overlapping spheres.  With 3 devices 
we can calculate the more specific location 
possibilities based on the intersection of the 
spheres.  As the number of devices increases, we 
get a better idea of where each neighbor “lives”.



Foundation of NTP
NTP keeps time in the heart of the kernel.  To do 
this, it syncs the time using network packets and/or 
direct IO (like serial and PPS connections) to a 
Reference Clock (refclock).  That communication 
goes thru a variety of "layers" to exchange data 
with the time partner.  These layers add noise/jitter 
to the time sync process, which reduces accuracy.  
The network path might have some asymmetry.  
Any asymmetric network connection degrades the 
quality of time synchronization. 



Foundation of PTP…

PTP works by exchanging the time on a clock chip 
built in to a network interface.  If the PTP NIC on 
one machine talks over a directly-connected 
network cable to a PTP NIC on another machine, 
that connection is both direct and symmetric, and it 
is easy to closely synchronize the PTP clock chips 
on these two devices.

But that's the best, simplest, and perhaps least 
useful/interesting configuration.



NIC       

System

Clock

Kernel

NIC       

System

Clock

Kernel



…Foundation of PTP

Also, one needs synchronized time on a more 
generally accessible clock than the one on the NIC 
chip.  One needs easily accessible synchronized 
time in many places on a system.  To get the time 
from the PTP clock on a NIC chip to the system 
clock in the heart of the kernel, time needs to be 
communicated over a variety of "layers" to get it to 
the system clock.  These layers add noise/jitter to 
the time sync process, which somewhat degrades 
accuracy. 



Foundations …
With both NTP and PTP, there is noise and jitter 
added whenever time is 'moved around' as part of 
the internal time synchronization process. 



Design of NTP
NTP was designed to transfer time at the network 
level.  Each hop in the network introduces more 
noise and jitter.  If two NTP systems are directly 
connected to each other with a cable, like the 
simplest PTP case, the theoretical difference 
between NTP and PTP can be reduced to the 
noise and jitter between the NIC and the system 
clock.  In a LAN setting, NTP can easily 
synchronize clocks to the sub-millisecond level.  It 
can do even better with things like hardware 
timestamps in the NIC. 



NIC       

System

Clock

Kernel

NIC       

System

Clock

Kernel



Design of PTP
PTP was designed to transfer time over a bus.  In 
the simplest configuration, NIC to NIC, time can be 
synchronized to a handful of nanoseconds.  Time 
transfer degrades somewhat if there is a single 
PTP-capable switch involved.  Time degradation 
increases with the addition of every additional 
PTP-capable switch.  If any non-PTP-capable 
switch is used, high-accuracy time transfer is lost. 



NTP and PTP
With both NTP and PTP, there is noise and jitter 
added whenever time is 'moved around' as part of 
the internal time synchronization process. 



NTP …
NTP was designed to synchronize time at the 
network level.

Local-area, wide-area, and even in space.

The better the quality of the network, the better the 
quality of time synchronization.

Each hop in the network introduces more noise 
and jitter.



… NTP
If two NTP systems are directly connected to each 
other with a cable, like the simplest PTP case, the 
theoretical difference between NTP and PTP can 
be reduced to the noise and jitter between the NIC 
and the system clock.

Over a LAN, NTP can easily synchronize clocks to 
the sub-millisecond level.  It can do better with 
things like hardware timestamps in the NIC.



PTP 
PTP was designed to synchronize time over a bus.

In the simplest configuration, NIC to NIC, time can 
be synchronized to a handful of nanoseconds.  
Time transfer degrades somewhat if there is a 
single PTP-capable switch involved.  Time 
degradation increases with the addition of every 
additional PTP-capable switch.  If any 
non-PTP-capable switch is used, high-accuracy 
time transfer is lost. 



PTP
Grandmaster

PTP
Switch 0

PTP
Switch 1

PTP
Client 0

▪   ▪   ▪   ▪   ▪ ▪   ▪   ▪   ▪   ▪

PTP
Client 1



Convergence…
NTP might take a whole week to converge to
within a few milliseconds to a remote server over 
the Internet.  But its servo can do that, slowly 
averaging out all of the packet delay variation. This 
works even over WiFi links.

PTP can't do that.  At least, not LinuxPTP.  The 
servos assume hardware time stamping and a well 
behaved LAN, without much packet delay 
variation.



… Convergence
With a well behaved LAN, PTP can converge to a 
few dozen nanoseconds within a few seconds, by 
sending many packets.  NTP can't do that.

So NTP and PTP operate on the same principles, 
but they are tuned to different use cases.

With enough effort, NTP could perform as well as 
PTP in a LAN setting, and PTP could work over
the public Internet with WiFi links, just like NTP.



Fun Story #1
Once upon a time (but not all that long ago), in a land far, far away, something like this might have happened:

There was a master time lab that had long used an 
older computer to serve NTP to the public.  By the 
time it was done booting, communication with the 
master clock was stable and the box was ready to 
answer time queries.  One day, this server box was 
upgraded.  When they turned it on the new box 
booted up much faster.  It started answering NTP 
requests before communication with the master 
clock was ready.  For a short while it told folks the 
time was 1 Jan 1970 at 00:00:xx.



Fun Story #2

An underground optical cable connects a (very good) clock 
at a NIST building in Boulder Colorado, USA to a laboratory 
at the nearby University of Colorado. On a hot day the 
length of this cable grows by 11 mm (less than half an 
inch). Researchers must monitor the temperature along the 
cable run and account for the (very measurable) difference 
this makes. Light travels about 200,000 km/sec (124,274 
miles/sec) in an optical cable, so in a nanosecond it travels 
about 200 mm (8 inches). This clock is so good that on a 
hot day they can tell that the light in the optical cable takes 
.05 nanoseconds longer to travel the entire length of the 
cable. That’s .000 000 000 05 seconds.



NTF Projects

NTF now supports the following:
● The NTP Project
● Ntimed (a new, clean NTP implementation)
● Khronos (provable realtime bounds on valid time)
● LinuxPTP (a PTP implementation for Linux)
● libptpmgmt (a TLV management library for LinuxPTP)
● Several SyncE projects (frequency synchronization)
● General Timestamp API (much better timestamps) 



Quick Thank-Yous

I’d like to thank:

Laura Jones Crossey, Distinguished Professor of Earth 
and Planetary Sciences at the University of New 
Mexico, for helping me with the graphics slides

Pedro Aznar and Tania Maria, for their music.  I doubt 
either of them will ever know I feel this way :)
I could list many more here…



Mills-Spring Fund

https://www.nwtime.org/mills-spring/

The Mills-Spring Fund at Network 
Time Foundation was established in 
2024, with the blessings of his family, 
to honor and perpetuate the legacy 
and efforts of David L. Mills, Internet 
Pioneer and architect of the Network 
Time Protocol.

Donations to the Mills-Spring Fund 
assist Network Time Foundation in 
sponsoring the development and 
maintenance of the open source 
timekeeping protocols used daily by 
billions of users.

https://nwtime.org/tribute-to-david-l-mills

